p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.185D4, C24.358C23, C23.511C24, C22.2112- 1+4, C42⋊4C4⋊29C2, C23.164(C4○D4), (C2×C42).598C22, (C23×C4).415C22, (C22×C4).126C23, C22.337(C22×D4), C23.4Q8.14C2, C23.8Q8.40C2, C23.11D4.25C2, C23.83C23⋊56C2, C23.81C23⋊55C2, C2.80(C22.19C24), C24.C22.42C2, C23.65C23⋊101C2, C23.63C23⋊111C2, C2.C42.240C22, C2.49(C22.26C24), C2.30(C23.38C23), C2.78(C22.46C24), (C2×C4).372(C2×D4), (C2×C42.C2)⋊15C2, (C2×C4).413(C4○D4), (C2×C4⋊C4).350C22, C22.387(C2×C4○D4), (C2×C42⋊C2).44C2, (C2×C22⋊C4).518C22, SmallGroup(128,1343)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.185D4
G = < a,b,c,d | a4=b4=c4=1, d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=dbd-1=a2b-1, dcd-1=a2b2c-1 >
Subgroups: 404 in 238 conjugacy classes, 100 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, C2.C42, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42.C2, C23×C4, C42⋊4C4, C23.8Q8, C23.63C23, C24.C22, C23.65C23, C23.11D4, C23.81C23, C23.4Q8, C23.83C23, C2×C42⋊C2, C2×C42.C2, C42.185D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2- 1+4, C22.19C24, C22.26C24, C23.38C23, C22.46C24, C42.185D4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 40 29 16)(2 37 30 13)(3 38 31 14)(4 39 32 15)(5 54 21 45)(6 55 22 46)(7 56 23 47)(8 53 24 48)(9 34 25 49)(10 35 26 50)(11 36 27 51)(12 33 28 52)(17 58 64 43)(18 59 61 44)(19 60 62 41)(20 57 63 42)
(1 54 10 63)(2 48 11 19)(3 56 12 61)(4 46 9 17)(5 33 57 38)(6 51 58 13)(7 35 59 40)(8 49 60 15)(14 21 52 42)(16 23 50 44)(18 31 47 28)(20 29 45 26)(22 36 43 37)(24 34 41 39)(25 64 32 55)(27 62 30 53)
(1 18 31 63)(2 17 32 62)(3 20 29 61)(4 19 30 64)(5 33 23 50)(6 36 24 49)(7 35 21 52)(8 34 22 51)(9 48 27 55)(10 47 28 54)(11 46 25 53)(12 45 26 56)(13 60 39 43)(14 59 40 42)(15 58 37 41)(16 57 38 44)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,40,29,16)(2,37,30,13)(3,38,31,14)(4,39,32,15)(5,54,21,45)(6,55,22,46)(7,56,23,47)(8,53,24,48)(9,34,25,49)(10,35,26,50)(11,36,27,51)(12,33,28,52)(17,58,64,43)(18,59,61,44)(19,60,62,41)(20,57,63,42), (1,54,10,63)(2,48,11,19)(3,56,12,61)(4,46,9,17)(5,33,57,38)(6,51,58,13)(7,35,59,40)(8,49,60,15)(14,21,52,42)(16,23,50,44)(18,31,47,28)(20,29,45,26)(22,36,43,37)(24,34,41,39)(25,64,32,55)(27,62,30,53), (1,18,31,63)(2,17,32,62)(3,20,29,61)(4,19,30,64)(5,33,23,50)(6,36,24,49)(7,35,21,52)(8,34,22,51)(9,48,27,55)(10,47,28,54)(11,46,25,53)(12,45,26,56)(13,60,39,43)(14,59,40,42)(15,58,37,41)(16,57,38,44)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,40,29,16)(2,37,30,13)(3,38,31,14)(4,39,32,15)(5,54,21,45)(6,55,22,46)(7,56,23,47)(8,53,24,48)(9,34,25,49)(10,35,26,50)(11,36,27,51)(12,33,28,52)(17,58,64,43)(18,59,61,44)(19,60,62,41)(20,57,63,42), (1,54,10,63)(2,48,11,19)(3,56,12,61)(4,46,9,17)(5,33,57,38)(6,51,58,13)(7,35,59,40)(8,49,60,15)(14,21,52,42)(16,23,50,44)(18,31,47,28)(20,29,45,26)(22,36,43,37)(24,34,41,39)(25,64,32,55)(27,62,30,53), (1,18,31,63)(2,17,32,62)(3,20,29,61)(4,19,30,64)(5,33,23,50)(6,36,24,49)(7,35,21,52)(8,34,22,51)(9,48,27,55)(10,47,28,54)(11,46,25,53)(12,45,26,56)(13,60,39,43)(14,59,40,42)(15,58,37,41)(16,57,38,44) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,40,29,16),(2,37,30,13),(3,38,31,14),(4,39,32,15),(5,54,21,45),(6,55,22,46),(7,56,23,47),(8,53,24,48),(9,34,25,49),(10,35,26,50),(11,36,27,51),(12,33,28,52),(17,58,64,43),(18,59,61,44),(19,60,62,41),(20,57,63,42)], [(1,54,10,63),(2,48,11,19),(3,56,12,61),(4,46,9,17),(5,33,57,38),(6,51,58,13),(7,35,59,40),(8,49,60,15),(14,21,52,42),(16,23,50,44),(18,31,47,28),(20,29,45,26),(22,36,43,37),(24,34,41,39),(25,64,32,55),(27,62,30,53)], [(1,18,31,63),(2,17,32,62),(3,20,29,61),(4,19,30,64),(5,33,23,50),(6,36,24,49),(7,35,21,52),(8,34,22,51),(9,48,27,55),(10,47,28,54),(11,46,25,53),(12,45,26,56),(13,60,39,43),(14,59,40,42),(15,58,37,41),(16,57,38,44)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4H | 4I | ··· | 4X | 4Y | 4Z | 4AA | 4AB |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2- 1+4 |
kernel | C42.185D4 | C42⋊4C4 | C23.8Q8 | C23.63C23 | C24.C22 | C23.65C23 | C23.11D4 | C23.81C23 | C23.4Q8 | C23.83C23 | C2×C42⋊C2 | C2×C42.C2 | C42 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 12 | 4 | 2 |
Matrix representation of C42.185D4 ►in GL6(𝔽5)
3 | 4 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 3 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
1 | 3 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 3 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [3,0,0,0,0,0,4,2,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,3,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1] >;
C42.185D4 in GAP, Magma, Sage, TeX
C_4^2._{185}D_4
% in TeX
G:=Group("C4^2.185D4");
// GroupNames label
G:=SmallGroup(128,1343);
// by ID
G=gap.SmallGroup(128,1343);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,568,758,723,675,248]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^2*b^-1,d*c*d^-1=a^2*b^2*c^-1>;
// generators/relations